1.

Evaluate `int (dx)/(x{6(logx)^(2)+7logx+2}).`

Answer» Putting `log x=t and (1)/(x) dx=dt,` we get
`I=int (dx)/(x{6(logx)^(2)+7logx+2})=int(dt)/((6t^(2)+7t+2))=int(dt)/((2t+1)(3t+2)).`
`Let (1)/((2t+1)(3t+2))=(A)/((2t+1))+(B)/((3t+2)).`
Then,`1-=A(3t+2)+B(2t+1).`
Putting `t=-(1)/(2)`in (i) , we get `A=2`
Putting `t=(-2)/(3)`in (i) , we get `B=-3.`
`therefore (1)/((2t+1)(3t+2))=(2)/((2t+1))-(3)/((3t+2))`
`implies I=int(dt)/((2t+1)(3t+2))`
`=int (dt)/((2t+1)(3t+2))`
`=log |2t+1|-log|3t+2|+C`
`=log|(2t+1)/(3t+2)|+C`
`=log |(2logx+1)/(3logx+2)|+C`


Discussion

No Comment Found