InterviewSolution
Saved Bookmarks
| 1. |
Evaluate\(\int\limits_{-1}^{1}\) x | x | dx |
|
Answer» Let I = \(\int\limits_{-1}^{1} \) x | x | dx |x|= -x, if x <0 And |x|=x, if x ≥ 0 Therefore f(x)=x|x|=-x2, if x<0 And f(x)=x|x|=x2, if x ≥ 0 Consider x≥0 ⇒ f(x)=x2 Then -x < 0 ⇒ f(-x) = -(-x)2 = -f(-x) Now Consider x<0 ⇒ f(x)=-x2 Then -x ≥ 0 ⇒ f(-x) =-(-x)2=x2= -f(x) Hence f(x) is an odd function. An odd function is a function which satisfies the propertyf(-x) =-f(-x), ∀ x∈ Domain of f(x) There is a property of integration of odd functions which states that \(\int\limits_{-a}^af(x)dx=0 \) if f(x) is an odd function. Therefore I = \(\int\limits_{-1}^{1} \) x | x | dx = 0 |
|