1.

Evaluate\(\int\limits_{-1}^{1}\) x | x | dx

Answer»

Let

I =  \(\int\limits_{-1}^{1} \) x | x | dx

|x|= -x, if x <0

And |x|=x, if x ≥ 0

Therefore f(x)=x|x|=-x2, if x<0

And f(x)=x|x|=x2, if x ≥ 0

Consider x≥0 ⇒ f(x)=x2

Then -x < 0 ⇒ f(-x) = -(-x)2 = -f(-x)

Now Consider x<0 ⇒ f(x)=-x2

Then -x ≥ 0 ⇒ f(-x) =-(-x)2=x2= -f(x)

Hence f(x) is an odd function. An odd function is a function which satisfies the propertyf(-x) =-f(-x), ∀ x∈ Domain of f(x)

There is a property of integration of odd functions which states that

\(\int\limits_{-a}^af(x)dx=0 \) if f(x) is an odd function.

Therefore I =  \(\int\limits_{-1}^{1} \) x | x | dx = 0



Discussion

No Comment Found