1.

Evaluate `int sin(logx)dx`.

Answer» Let `log x =t.` Then,
`x=e^(t)impliesdx=e^(t)dt`
` :. I =int sin(logx)dx`
`=int sin t e^(t) dt`
`=(e^(t))/(2)(sint-cost)+C`
Hence, `int sin(logx)dx=(x)/(2) [sin(logx)-cos(logx)]+C`


Discussion

No Comment Found

Related InterviewSolutions