1.

Evaluate: `int((x^2+1)(x^2+2))/((x^2+3)(x^2+4)) dx`

Answer» We have
`((x^(2)+1)(x^(2)+2))/((x^(2)+3)(x^(2)+4))=((t+1)(t+2))/((t+3)(t+4)),"where "x^(2)=t`
`=((t^(2)+3t+2))/((t^(2)+7t+12))=1-((4t+10))/((t+3)(t+4)).`
`Let ((4t+10))/((t+3)(t+4))+(A)/((t+3))+(B)/((t+4))`
`implies (4t+10)-=A(t+4)+B(t+3).. . . (i)`
Putting `t=-3`in(i) ,we get `A=-2`
Putting `t=-4`in(i) ,we get `B=6`.
`therefore ((4t+10))/((t+3)(t+4))=(-2)/((t+3))+(6)/((t+4)).`
`thus ,((x^(2)+1)(x^(2)+2))/((x^(2)+3)(x^(2)+4)=((t+1)(t+2))/((t+3)(t+4)),"where"x^(2)=t`
`=((t^(2)+3t+2))/(t^(2)+7t+12))+1-((4t+10))/((t+3)(t+4))`
`=1-{(-2)/((t+3))+(6)/((t+4))}["from(ii)"]`
`={1+(2)/((t+3))-(6)/((t+4))}`
`={1+(2)/((x^(2)+3))-(6)/((x^(2)+4))}.`
`thereforeint((x^(2)+1)(x^(2)+2))/((x^(2)+3)(x^(2)+4))dx=int{1+(2)/((x^(2)+3))-(6)/((x^(2)+4))}dx.`
`intdx+2int(dx)/((x^(2)+3))-6int(dx)/((x^(2)+4))`
`=x+(2)/(sqrt(3))tan^(-1)((x)/(sqrt(3)))-(6)/(2)tan^(-1)((x)/(2))+C`
`=x+(2)/(sqrt(3))tan^(-1)((x)/(sqrt(3)))-3tan^(-1)((x)/(2))+C.`


Discussion

No Comment Found