1.

Evaluate:`int(x^2+1)/(x^2-5x+6)dx`

Answer» Here the integrand is not a proper rational function , on dividing `(x^(2)+1)"by" (x^(2)-5x+6),`we get
`((x^(2)+1))/((x^(2)-5x+6))=1+((5x-5))/((x^(2)-5x+6))=1+((5x-5))/((x-2)(x-3)).`
`Now ,Let ((5x-5))/((x-2)(x-3))=(A)/((x-2))+(B)/((x-3))`
`implies ((5x-5))/((x-2)(x-3))=(A(x-3)+B(x-2))/((x-2)(x-3))`
`implies (5x-5-=A(x-3)+B(x-2).`
Putting `x=2` on both sides of (i) we get `A=-5.`
Putting `x=3` on both sides of (i) , we get `B=10.`
`therefore ((x^(2)+1))/((x^(2)-5x+6))=1-(5)/((x-2))+(10)/((x-3))`
`implies int((x^(2)+1))/((x^(2)-5x+6))dx=intdx-5int(dx)/((x-2))+10int(dx)/((x-3))`
`=x-5 log |x-2|+10 log |x-3|+c.`


Discussion

No Comment Found