1.

Evaluate: `int(x^4 dx)/((x-1)(x^2+1))`

Answer» `(x^(4))/((x-1)(x^(2)+1))=(x^(4))/((x^(3)-x^(2)+x-1))=(x+1)+(1)/((x^(3)-x^(2)+x-1))`
`implies(x^(4))/((x-1)(x^(2)+1))=(x+1)+(1)/((x-1)(x^(2)+1)).`
`Let (1)/((x-1)(x^(2)+1))=(A)/((x-1))+(bx+C)/((x^(2)+1)).then`,
`1-=A(x^(2)+1)+(Bx+C)(x-1).`
Putting `x=1` in (ii) , we get `A=(1)/(2).`
Comparing the coefficients of `x^(2)` on both sides of (ii) , we get
`A+B=0implies B=-A=-(1)/(2).`
Comparing the constant Terms on both sides on (ii) , we get
`A-C=1implies C=(A-1)=((1)/(2)-1)=(-1)/(2).`
`therefore (1)/((x-1)(x^(2)+1))=(1)/(2(x-1))+(-(1)/(2)x-(1)/(2))/((x^(2)+1))`
`therefore (x^(4))/((x-1)(x^(2)+1))=(x+1)+(1)/(2(x-1))-(1)/(2).((x+1))/((x^(2)+1))`
`=int (x^(4))/((x-1)(x^(2)+1))dx=int (x+1)dx=int(x-1)dx+(1)/(2)int(dx)/((x-1))-(1)/(4).int (2x)/((x^(2)+1))dx-(1)/(2)int(dx)/((x^(2)+1))`
`=(x^(2))/(2)+x+(1)/(2)log|x-1|-(1)/(4)log(x^(2)+1)-(1)/(2)tan^(-1)x+C.`


Discussion

No Comment Found