InterviewSolution
Saved Bookmarks
| 1. |
Expand the Reynolds stress term \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}}\) for the Spalart-Allmaras model.(a) \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}} = \rho \overline{v} f_{v1} (\frac{\partial U_i}{\partial x_i}+\frac{\partial U_j}{\partial x_j})\)(b) \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}} = \rho \overline{v} f_{v1} (\frac{\partial U_i}{\partial x_j}+\frac{\partial U_j}{\partial x_i})\)(c) \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}} = 2\rho \overline{v} f_{v1} (\frac{\partial U_i}{\partial x_i}+\frac{\partial U_j}{\partial x_j})\)(d) \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}} = 2\rho \overline{v} f_{v1} (\frac{\partial U_i}{\partial x_j}+\frac{\partial U_j}{\partial x_i}) \)The question was posed to me in an online quiz.The query is from Turbulence Modelling topic in chapter Turbulence Modelling of Computational Fluid Dynamics |
|
Answer» Right choice is (b) \(-\rho \overline{u_{i}^{‘} u_{j}^{‘}} = \rho \overline{v} f_{v1} (\frac{\PARTIAL U_i}{\partial x_j}+\frac{\partial U_j}{\partial x_i})\) |
|