

InterviewSolution
Saved Bookmarks
1. |
Explain the horizontal oscillations of a spring. |
Answer» <html><body><p></p>Solution :`(i)` Let `'m'` be the mass of a block attached to a mass less spring <br/> `(ii) '<a href="https://interviewquestions.tuteehub.com/tag/k-527196" style="font-weight:bold;" target="_blank" title="Click to know more about K">K</a>'` be the stiffness <a href="https://interviewquestions.tuteehub.com/tag/constant-930172" style="font-weight:bold;" target="_blank" title="Click to know more about CONSTANT">CONSTANT</a> or force constant or spring constant of the spring. <br/> `(<a href="https://interviewquestions.tuteehub.com/tag/iii-497983" style="font-weight:bold;" target="_blank" title="Click to know more about III">III</a>) 'x_(0)'` be the mean or equilibrium position of the block. <br/> `(iv) 'x'` be the small displacement of the block towards right, and the released. <br/> `(<a href="https://interviewquestions.tuteehub.com/tag/v-722631" style="font-weight:bold;" target="_blank" title="Click to know more about V">V</a>)` The block will oscillate back and forth about `x_(0)` <br/> `(vi)` If `F` be the restoring force, then it is proportional to the `'x'` <br/> <img src="https://d10lpgp6xz60nq.cloudfront.net/physics_images/SUR_PHY_XI_V02_QP_MAR_19_E04_008_S01.png" width="80%"/> <br/> <img src="https://d10lpgp6xz60nq.cloudfront.net/physics_images/SUR_PHY_XI_V02_QP_MAR_19_E04_008_S02.png" width="80%"/> <br/> <img src="https://d10lpgp6xz60nq.cloudfront.net/physics_images/SUR_PHY_XI_V02_QP_MAR_19_E04_008_S03.png" width="80%"/> <br/> `F prop x` <br/> `F=-kx` <br/> `m(d^(2)x)/(<a href="https://interviewquestions.tuteehub.com/tag/dt-960413" style="font-weight:bold;" target="_blank" title="Click to know more about DT">DT</a>^(2))=-kx` <br/> `(d^(2)x)/(dt^(2))=-(k)/(m)x` <br/> `omega^(2)=(k)/(m)` <br/> `omega=sqrt((k)/(m))rads^(-1)` <br/> `f=(omega)/(2pi)=(1)/(2pi)hertz` <br/> `T=(1)/(f)=2pisqrt((m)/(k))` second</body></html> | |