InterviewSolution
Saved Bookmarks
| 1. |
Express the 2-dimensional continuity equation in cylindrical coordinates.(a) \(\frac{\partial(\rho v_r)}{\partial r}+\frac{1}{r}\frac{\partial(\rho v_\theta)}{\partial\theta}+\frac{\rhov_r}{r}=0\)(b) \(\frac{\partial(\rho v_r)}{\partial r}+\frac{1}{r}\frac{\partial(\rho v_\theta)}{\partial\theta}+\rho\frac{v_r}{r}+\frac{\partial\rho}{\partial t}=0 \)(c) \(\frac{\partial(\rho v_r)}{\partial r}+\frac{1}{r}\frac{\partial(\rho v_\theta)}{\partial\theta}+\frac{\partial\rho}{\partial t}=0\)(d) \(\frac{\partial(\rho v_r)}{\partial r}+\frac{1}{r}\frac{\partial(\rho v_\theta)}{\partial\theta}+\rho \frac{v_r}{r}+\frac{\partial\rho}{\partial t}=0\)This question was addressed to me in an interview for internship.Question is taken from Numerical Methods in section Numerical Methods of Computational Fluid Dynamics |
|
Answer» The correct option is (b) \(\FRAC{\partial(\rho v_r)}{\partial r}+\frac{1}{r}\frac{\partial(\rho v_\theta)}{\partial\theta}+\rho\frac{v_r}{r}+\frac{\partial\rho}{\partial t}=0 \) |
|