

InterviewSolution
Saved Bookmarks
1. |
Express the constant k of Eq. (8.38) in days and kilometres. Given k = 10^(–13) s^(2) m^(–3) . The moon is at a distance of 3.84 x× 105 kmfrom the earth. Obtain its time-period of revolution in days. |
Answer» <html><body><p></p>Solution :Given <br/> K = `10^(-13) s^(2) m^(-3)` <br/> `= 10^(-13)[ (1)/((<a href="https://interviewquestions.tuteehub.com/tag/24-295400" style="font-weight:bold;" target="_blank" title="Click to know more about 24">24</a> <a href="https://interviewquestions.tuteehub.com/tag/xx-747671" style="font-weight:bold;" target="_blank" title="Click to know more about XX">XX</a> 60 xx 60 )^(2))d^(2) ] [ (1)/((1 // 1000)^(3) km^(3)) ] ` <br/> `= 1.33 xx 10^(-14) d^(2) km^(-3)` <br/> Using <a href="https://interviewquestions.tuteehub.com/tag/eq-446394" style="font-weight:bold;" target="_blank" title="Click to know more about EQ">EQ</a>. (8.38) and the given <a href="https://interviewquestions.tuteehub.com/tag/value-1442530" style="font-weight:bold;" target="_blank" title="Click to know more about VALUE">VALUE</a> of k, the time period of the moon is<br/> `T^(2) = (1.33 xx 10^(-14)) (3.84 xx 10^(5))^(3)` <br/> Not that Eq. (8.38) also holds for elltpttcal orbits If we <a href="https://interviewquestions.tuteehub.com/tag/replace-1185206" style="font-weight:bold;" target="_blank" title="Click to know more about REPLACE">REPLACE</a> `(R_(E) + h)` by the semi- major axis of the elltpse. The earth. will then the at one of the foct of this ellipse.</body></html> | |