InterviewSolution
Saved Bookmarks
| 1. |
Find a cubic polynomial whose zeroes are \(\frac{1}2\) , 1 and –3. |
|
Answer» If the zeroes of the cubic polynomial are a, b and c then the cubic polynomial can be found as x3 – (a + b + c)x2 + (ab + bc + ca)x – abc ……(1) Let a = \(\frac{1}{2}\), b = 1 and c = –3 Substituting the values in (1), we get x3 – \((\frac{1}3+1-3)\) x2 + \((\frac{1}3-3-\frac{3}2)\)x - \((\frac{-3}2)\) ⇒ x3 – \((\frac{-3}2)\)x2 - 4x = \(\frac{3}2\) ⇒ 2x3 + 3x2 – 8x + 3 |
|