1.

Find a cubic polynomial whose zeroes are \(\frac{1}2\) , 1 and –3.

Answer»

If the zeroes of the cubic polynomial are a, b and c then the cubic polynomial can be found as 

x3 – (a + b + c)x2 + (ab + bc + ca)x – abc ……(1) 

Let a = \(\frac{1}{2}\), b = 1 and c = –3 

Substituting the values in (1), we get

x3 – \((\frac{1}3+1-3)\) x2\((\frac{1}3-3-\frac{3}2)\)x - \((\frac{-3}2)\)

⇒ x3 – \((\frac{-3}2)\)x2 - 4x = \(\frac{3}2\)

⇒ 2x3 + 3x2 – 8x + 3



Discussion

No Comment Found