Saved Bookmarks
| 1. |
Find a point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slope is \(-\frac{1}{6}\). |
|
Answer» Given: The curve y = 3x2 + 4 and the Slope of the tangent is \(\frac{-1}{6}\) y = 3x2 + 4 Differentiating the above w.r.t x ⇒ \(\frac{dy}{dx}\) = 2 x 3x2 – 1 + 0 ⇒ \(\frac{dy}{dx}\) = 6x ...(1) Since, tangent is perpendicular to the line, \(\therefore\) The Slope of the normal = \(\frac{-1}{\text{The Slope of the tangent}}\) i.e, \(\frac{-1}{6}\) = \(\frac{-1}{6x}\) ⇒ \(\frac{1}{6}\) = \(\frac{1}{6x}\) ⇒ x = 1 Substituting x = 1 in y = 3x2 + 4, ⇒ y = 3(1)2 + 4 ⇒ y = 3 + 4 ⇒ y = 7 Thus, the required point is (1,7). |
|