InterviewSolution
Saved Bookmarks
| 1. |
Find all possible values of (i) `sqrt(|x|-2)` (ii) `sqrt(3-|x-1|)` (iii) `Sqrt(4-sqrt^2))` |
|
Answer» `sqrt(|x|-2)` we know that square roots are defined for non- negative values only . It implies that we must have `|x|-2 le 0 ` Thus `sqrt(|x|-2) ge 0 ` (ii) `sqrt(3-|x-1|)` is defined when `3-|x-1| le 0 ` But the maximum value of 3-|x-1| is 3 , when |x-1| is 0 Hence for `sqrt(3-|x-1|)` to get defined , `0 le 3- |x-1| le 3 ` Thus , `sqrt(3-|x-1|)in [0,sqrt(3)]` Alternatively , `|x-1| ge 0` `rArr -|x-1| le 0 ` `rArr 3-|x-1|le3` But for `sqrt(3-|x-1|)` to get defined ,we must have `0 le 3 -|x-1| le 3 ` `rArr 0 le sqrt(3-|x-1| le sqrt(3)` (iii) `sqrt(4-sqrt(x^2))=sqrt(4-|x|)` `|x| ge 0 ` `rArr - |x| le 0 ` `rArr 4-|x| le 4 ` But for `sqrt(4-|x| )` to get defined `0 le 4 - |x| le 4 ` `therefore 0 le sqrt(4-|x|) le 2 ` |
|