InterviewSolution
Saved Bookmarks
| 1. |
Find period of the following functions (i) `f(x)="sin" x/2+"cos"x/3` (ii) `f(x)={x}+sinx,` where `{.}` denotes fractional part function (iii) `f(x)=4cosx.cos3x+2` (iv) `f(x)="sin"(3x)/2-"cos"x/3-"tan"(2x)/3` |
|
Answer» (i) Period of `"sin"x/2` is `4pi` while period of `"cos"x/3` is `6pi`. Hence period of `"sin"x/2+"cos"x/3` is `12pi` {L.C.M of 4 and 6 is 12} (ii) Period of `sinx=2pi` Period of `{x}=1` but L.C.M. of `2pi` and 1 is not possible as their ratio is irrational number it is aperiodic. (iii) `f(x)=4cosx.cos3x+2` period of `f(x)` is L.C.M of `(2pi,(2pi)/3)=2pi` but `2pi` may or may not be fundamental periodic but fundamental period `=(2pi)/n` where `n epsilonN`. Hence cross checking for `n=1,2,3,`....... we find `pi` to be fundamental period `f(pi+x)=4(-cosx)(-cos3x)+2=f(x)` (iv) Period of `f(x)` is L.C.M of `(2pi)/(3//2),(2pi)/(1//3),(pi)/(2//3)=` L.CM. of `(4pi)/3,6pi,(3pi)/2=12pi` |
|