1.

Find the centre and the radius of the circle. (a) x2 + y2 – 4x – y – 5 = 0 (b) 3x2 + 3y2 – 6x – 12y – 2 = 0 (c) (x – 2) (x – 4) + (y – 1) (y – 3) = 0 (d) x2 + y2 – 2x cosα – 2y sinα = 1

Answer»

(a) x2 + y2 – 4x – y – 5 = 0 

Comparing with x2 + y2 + 2gx + 2fy + C = 0 

We get 2g = – 4, 2f = – 1 ⇒ g = -2, f = \(\frac{1}{2}\)

∴ C=(-8,-1) = (2, \(\frac{1}{2}\)

(b) Given 3x2 + 3y2 – 6x – 12y – 2 = 0, divide by 3 

x2 + y2 – 2x – 4y – \(\frac{2}{3}\) = 0 

Here g = -1, f = -2, & c = \(\frac{2}{3}\)

∴Centre = (-g, -f) = (1, 2) & r = \(\sqrt{g^2 + f^2 - c}\)

\(\sqrt{(-1)^2 + (-2)^2 - (-\frac{2}{3}})\)

r = \(\sqrt{1 - 4 - \frac{2}{3}}\) = \(\sqrt{\frac{17}{3}}\) units.

(c) Given (x – 2) (x – 4) + (y – 1) (y – 3) = 0 

⇒ x2 – 6x + 8 + y2 – 4y + 3 = 0 

⇒ x2 + y2 – 6x – 4y + 11 = 0 

Here g = -3, f= -2, C = 11 & 

∴ Centre = (3, 2).

And r = \(\sqrt{9 + 4 - 11}\) = √2 units

(d) Given x2 + y2 – 2xcosα – 2ysinα – 1 = 0 

g = – cosα, f = – sinα, c = -1 

∴ Centre = (cosα, sinα) & r 

\(\sqrt{cos^\alpha + sin^2\alpha + 1} = \sqrt{1 + 1}\) = √2



Discussion

No Comment Found

Related InterviewSolutions