1.

Find the cube roots of the numbers 3048625, 20346417, 210644875, 57066625 using the fact that(i) 3048625 = 3375 x 729(ii) 20346417 = 9261 x 2197(iii) 210644875 = 42875 x 4913(iv) 57066625 = 166375 x 343

Answer»

(i) 3048625 = 3375 x 729

Taking cube root of the whole, we get,

\(\sqrt[3]{3048625}\) = \(\sqrt[3]{3375\times729}\)

We know that,

\(\sqrt[3]{ab}\) = \(\sqrt[3]{a\times}\) \(\sqrt[3]{b}\)

\(\sqrt[3]{3048625}\) = \(\sqrt[3]{3375}\) x \(\sqrt[3]{729}\)

Now by prime factorization,

\(\sqrt[3]{3\times3\times3\times5\times5\times5}\) x \(\sqrt[3]{9\times9\times9}\)

\(\sqrt[3]{3^3\times5^3}\times\sqrt[3]{9^3}\) 

\(\sqrt[3]{3^3}\times\) \(\sqrt[3]{5^3}\times\sqrt[3]{9^3}\)

\(3\times5\times9 = 135.\)

(ii) 20346417 = 9261 x 2197

Taking cube root of the whole,

\(\sqrt[3]{20346417}\) = \(\sqrt[3]{9261\times2197}\)

We know that,

=  \(\sqrt[3]{ab}\) = \(\sqrt[3]{a\times}\) \(\sqrt[3]{b}\)

\(\sqrt[3]{9261\times2197}\) =  \(\sqrt[3]{9261}\times\) \(\sqrt[3]{2197}\)

Now by prime factorization,

\(\sqrt[3]{3\times3\times3\times7\times7\times7}\) \(\times\sqrt[3]{13\times13\times13}\)

\(\sqrt[3]{3^3\times7^3}\times\) \(\sqrt[3]{13^3}\)

\(\sqrt[3]{3^3}\times\) \(\sqrt[3]{7^3}\times\) \(\sqrt[3]{13^3}\)

= 3 × 7 × 13 = 273.

(iii) 210644875 = 42875 x 4913

Taking cube root of the whole,

\(\sqrt[3]{210644875}\) = \(\sqrt[3]{42875\times4913}\)

We know that,

=  \(\sqrt[3]{ab}\) = \(\sqrt[3]{a\times}\) \(\sqrt[3]{b}\)

\(\sqrt[3]{42875\times4913}\) = \(\sqrt[3]{42875\times}\) \(\sqrt[3]{4913}\)

Now by prime factorization,

\(\sqrt[3]{5\times5\times5\times7\times7\times7}\) x \(\sqrt[3]{17\times17\times17}\)

\(\sqrt[3]{5^3\times7^3}\times\) \(\sqrt[3]{13^3}\)

\(\sqrt[3]{5^3}\times\) \(\sqrt[3]{7^3}\times\) \(\sqrt[3]{17^3}\)

\(5\times7\times17 = 595.\)

(iv) 57066625 = 166375 x 343

Taking cube root of the whole, we get,

\(\sqrt[3]{57066625}\) = \(\sqrt[3]{166375\times343}\)

We know that,

=  \(\sqrt[3]{ab}\) = \(\sqrt[3]{a\times}\) \(\sqrt[3]{b}\)

Now by prime factorization method,

\(\sqrt[3]{5\times5\times5\times11\times11\times11}\)\(\times\sqrt[3]{7\times7\times7}\)

\(\sqrt[3]{5^3\times11^3\times}\) \(\sqrt[3]{7^3}\)

\(\sqrt[3]{5^3}\times\sqrt[3]{11^3}\times\) \(\sqrt[3]{7^3}\)

\(5\times7\times11 = 385.\)



Discussion

No Comment Found