InterviewSolution
Saved Bookmarks
| 1. |
Find the dimensions of (a) the specific heat capacity c, (b) the coefficient of linear expansion `alpha` and (c) the gas constant R. Some of the equations these quantities are `Q=mc(T_(2)-T_(1)) l_(t)=l_(0)[1+alpha (T_(2)-T_(1))]` and PV=nRT. (Where Q=heat enegry , m=mass, `T_(1)&T_(2)`= temperatures, `l_(1)` =length at temperature `t^(@)C`, `l_(0)=` length at temperature `0^(@) C`, P=Pressure, v = volume, n = mole) |
|
Answer» Correct Answer - (a) `L^(2)T^(-2)K^(-1)` (b) `K^(-1)` (c)`ML^(2)T^(-2)K^(-1)(mol)^(-1)` (a)`[c]=([Q])/([m][T_(2)-T_(1)])` `[c] =L^(2)T^(-2)k^(-1)` `[l_(t)]=[l_(0)]=[l_(0)alpha(T_(2)-T_(1))]` `[alpha]=k^(-1)` (c) `[R]=([pv])/([nT])=(ML^(-1)T^(-2)L^(3))/(mol K)=ML^(@)T^(-2)k^(-1)k^(-1) mol^(-1)]` |
|