1.

Find the general solution of the differential equation `(dy)/(dx)-y=cosx`

Answer» The given differential equation is
` (dy)/(dx) -y = cos x " " ` ... (i)
This is of the form ` (dy)/(dx) + P y = Q, ` where ` P =- 1 and Q = cos x `
Thus, the given differential equation is linear.
`IF= e ^(int Pdx)= e ^( int - dx) = e ^(-x )`
So, the required solution is
`y xx IF = int { Q xxIF} dx + C, `
i.e., `y xx e ^(-x) = int (cos x ) e ^(-x) dx + C " "` ... (ii)
Let `I =int (cos x ) e ^(-x) dx `
` =( cos x ) (- e ^(-x)) - int (-sin x ) (-e ^(- x )) dx ` [ integrating by parts]
`" " = - (cos x ) e ^(- x) - int underset ("I")((sinx )) underset("II")((e^(-x)))dx`
` " " = - (cos x ) e ^(-x) - { (sin x ) (-e^(-x)) } - int (cos x ) (-e^(-x)) dx `
` = - ( cos x ) e ^(-x) + (sin x ) (e ^(-x)) -I.`
`therefore 2 I = (sin x - cos x ) e^(-x) rArr I = (1)/(2) (sinx - cos x ) e ^(-x)`.
Putting the value in (ii), we get
` y xx e ^(-x) = (1)/(2) ( sinx - cos x ) e ^(-x) + C rArr y = (1)/(2)(sin x - cos x ) + Ce^(x)`
Hence, `y = (1)/(2)( sinx - cos x ) + Ce ^(x) ` is the required solution.


Discussion

No Comment Found