Saved Bookmarks
| 1. |
Find the maximum and minimum values of 2x3 - 24x+107 on the interval [-3, 3]. |
|
Answer» max. value is 139 at x = −2 and min. value is 89 at x = 3 F’(x) = 6x2 - 24 = 0 6(x2 - 4) = 0 6(x2 - 22) = 0 6(x -2)(x+2) = 0 X = 2,-2 Now, we shall evaluate the value of f at these points and the end points F(2) = 2(2)3 - 24(2)+107 = 75 F(-2) = 2(-2)3 - 24(-2)+107 = 139 F(-3) = 2(-3)3 - 24(-3)+107 = 125 F(3) = 2(3)3 - 24(3)+107 = 89 |
|