InterviewSolution
Saved Bookmarks
| 1. |
Find the middle point of the chord intercepted on line `lx + my + n = 0` by circle `x^2+y^2=a^2`.A. `((-l)/(l^(2)+m^(2)),(-m)/(l^(2)+m^(2)))`B. `((-ln)/(l^(2)+m^(2)),(-mn)/(l^(2)+m^(2)))`C. `((-l)/(n(l^(2)+m^(2))),(-m)/(n(l^(2)+m^(2))))`D. none of these |
|
Answer» Correct Answer - B Let `(x_(1),y_(1))` be the mid-point of the chord intercepted by the circle `x^(2)+y^(2)=a^(2)` on the line `lx+my+n=0`. Then, the equation of the chord of the chord of the circle `x^(2)+y^(2)=a^(2)` whose middle point is `(x_(1), y_(1))` is `x x_(1) + y y_(1)-a^(2)=x_(1)^(2)+y_(1)^(2)-a^(2)` `rArr x x_(1)+y y_(1)=x_(1)^(2)+y_(1)^(2) " " ...(i)` Clearly, lx+my+n=0 and (i) represents the same line. `:. (x_(1))/(l)=(y_(1))/(m)=(-(x_(1)^(2)+y_(1)^(2)))/(n)=lambda`, say `rArr x_(1)=l lambda, y_(1)=m lambda` and `x_(1)^(2)+y_(1)^(2)=-n lambda` `rArr (l^(2)+m^(2))lambda^(2)=-n lambda` `rArr lambda=-(n)/(l^ (2)+m^(2))` `:. x_(1)=-(ln)/(l^(2)+m^(2)), y_(1)=(-mn)/(l^(2)+m^(2))` Hence, the required point is `((-ln)/(l^(2)+m^(2)),(-mn)/(l^(2)+m^(2)))` |
|