InterviewSolution
| 1. |
Find the missing values.S. No.Height 'h'Parallel side 'a'Parallel side 'b'Area(i)10 m12 m20 m(ii)13 cm28 cm492 sq. cm(iii)19 m16 m323 sq. m(iv)16 cm15 cm360 sq. cm |
|||||||||||||||||||||||||
|
Answer» (i) Given Height h = 10 m; Parallel sides a = 12 m; b = 20 m Area of the Trapezium = \(\frac{1}{2}\)h(a + b) sq. units = \(\frac{1}{2}\) x 10 x (12 + 20)m2 = (5 x 32)m2 = 160 m2 (ii) Given the parallel sides a = 13 cm; 6 = 28 cm Area of the trapezium = 492 sq. cm \(\frac{1}{2}\)h(a + b) = 492 \(\frac{1}{2}\) x h x (13 + 28) = 492 h x 41 = 492 x 2 h = \(\frac{492\,\times\,2}{41}\) h = 24 cm (iii) Given height ‘h’ = 19 m; Parallel sides b = 16 m Area of the trapezium = 323 sq. m \(\frac{1}{2}\)h(a + b) = 323 \(\frac{1}{2}\) x h x (a + 16) = 323 a + 16 = \(\frac{323\,\times\,2}{19}\) = 34 a = 34 – 16 = 18 m a = 18 m (iv) Given the height h - 16 cm; Parallel sides a = 15 cm Area of the trapezium = 360 sq. cm \(\frac{1}{2}\) x h x (a + b) = 360 \(\frac{1}{2}\) x 16 x (15 + 6) = 360 15 + b = \(\frac{360}{8}\) = 45 b = 45 – 15 = 30 b = 30 cm Tabulating the results we get
|
||||||||||||||||||||||||||