

InterviewSolution
Saved Bookmarks
1. |
Find the number of divisors of the number `N=2^3 .3^5 .5^7 .7^9`which are perfect squares. |
Answer» `becauseN=2^(3)*3^(5)*5^(7)*9^(11)` `=2^(3)*3^(5)*5^(7)*7^(9)*3^(22)` `=2^(3)*3^(27)*5^(7)*7^(9)` For perfect square of N, each prime factor must occur even number of times. 2 can be taken in 2 ways (i.e., `2^(0)` or `2^(2)`) 3 can be taken in 14 ways (i.e., `3^(0)` or `3^(2)` or `3^(4)` or `3^(6)` orr `3^(8)` or `3^(10)` orr `3^(12)` or `3^(14)` or `3^(16)` or `3^(18)` or `3^(20)` or `3^(22)` orr `3^(24)` or `3^(26)`) 5 can taken in 4 ways (i.e., `5^(0)` or `5^(2)` or `5^(4)` or `5^(6)`) and 7 can taken in 5 ways (i.e., `7^(0)` or `7^(4)` or `7^(4)` or `7^(6)` or `7^(8)`) Hence, total divisors which are perfect square `=2xx14xx4xx5=560` |
|