InterviewSolution
Saved Bookmarks
| 1. |
Find the particular solution of the differential equation `(1+e^(2x))dy+(1+y^2)e^x dx=0,`given that `y=1`when `x=0.`A. `tan^(-1)y+tan^(-1)e^(x)=pi/2`B. ` tan^(-1)x+tan^(-1)e^(y)=pi/2`C. ` tan^(-1) x + tan^(-1)e^(y)=pi/4`D. ` tan^(-1)y +tan^(-1)e^(x)=pi/3` |
|
Answer» Correct Answer - a Given differential equation is ` 1+e^((2x)) dy + ( 1+y^(2)) e^(x)dx = 0 ` Separating the variables , we get ` (dy)/(1+y^(2)) +(e^(x)dx)/(1+e^(2x))=0` On intergrating both sides , we get ` int (dy)/(1+y^(2)) + int (e^(x)dx)/(1+e^(2x)) = C` Put `e^(x) = t rArr e^(x) dx = dt ` ` rArr tan^(-1) y + int (dt)/(1+t^(2))=C` ` rAr tan^(-1) ty + tan^(-1) t = C` ` rArr tan^(-1) + tan^(-1) e^(x) = C " "` ... (i) ltbRgt Now, put x = 0 and y = 1 ` :. tan^(-1) + tan^(-1) e^(0) = C` ` rArr pi/4 +pi/4 C rArr C = pi/2 ` |
|