| 1. |
Find the point on the curve 2a2y = x3 – 3ax2 where the tangent is parallel to the x – axis. |
|
Answer» Given: The curve is 2a2y = x3 – 3ax2 Differentiating the above w.r.t x ⇒ 2a2 x \(\frac{dy}{dx}\)= 3x3 – 1 – 3 x 2ax2 – 1 ⇒ 2a2 \(\frac{dy}{dx}\)= 3x2 – 6ax ⇒ \(\frac{dy}{dx}\) = \(\frac{3x^2-6ax}{2a^2}\)...(1) \(\therefore\frac{dy}{dx}\)= The Slope of the tangent = tanθ Since, the tangent is parallel to x – axis i.e, ⇒ \(\frac{dy}{dx}\) = tan(0) = 0 ...(2) \(\therefore\) tan(0) = 0 \(\therefore\frac{dy}{dx}\)= The Slope of the tangent = tanθ From (1) & (2),we get, ⇒ \(\frac{3x^2-6ax}{2a^2}\) = 0 ⇒ 3x2 – 6ax = 0 ⇒ 3x(x – 2a) = 0 ⇒ 3x = 0 or (x – 2a) = 0 ⇒ x = 0 or x = 2a Substituting x = 0 or x = 2a in 2a2y = x3 – 3ax2, when x = 0 ⇒ 2a2y = (0)3 – 3a(0)2 ⇒ y = 0 when x = 2 ⇒ 2a2y = (2a)3 – 3a(2a)2 ⇒ 2a2y = 8a3 – 12a3 ⇒ 2a2y = – 4a3 ⇒ y = – 2a Thus, the required point is (0,0) & (2a, – 2a) |
|