1.

Find the point on the curve 2a2y = x3 – 3ax2 where the tangent is parallel to the x – axis.

Answer»

Given:

The curve is 2a2y = x3 – 3ax2

Differentiating the above w.r.t x

⇒ 2a2 x \(\frac{dy}{dx}\)= 3x3 – 1 – 3 x 2ax2 – 1

⇒ 2a2 \(\frac{dy}{dx}\)= 3x2 – 6ax

\(\frac{dy}{dx}\) = \(\frac{3x^2-6ax}{2a^2}\)...(1)

\(\therefore\frac{dy}{dx}\)= The Slope of the tangent = tanθ

Since, the tangent is parallel to x – axis

i.e,

⇒ \(\frac{dy}{dx}\) = tan(0) = 0 ...(2)

\(\therefore\) tan(0) = 0

 \(\therefore\frac{dy}{dx}\)= The Slope of the tangent = tanθ

From (1) & (2),we get,

⇒ \(\frac{3x^2-6ax}{2a^2}\) = 0

⇒ 3x2 – 6ax = 0

⇒ 3x(x – 2a) = 0

⇒ 3x = 0 or (x – 2a) = 0

⇒ x = 0 or x = 2a

Substituting x = 0 or x = 2a in 2a2y = x3 – 3ax2,

when x = 0

⇒ 2a2y = (0)3 – 3a(0)2

⇒ y = 0

when x = 2

⇒ 2a2y = (2a)3 – 3a(2a)2

⇒ 2a2y = 8a3 – 12a3

⇒ 2a2y = – 4a3

⇒ y = – 2a

Thus, the required point is (0,0) & (2a, – 2a)



Discussion

No Comment Found