1.

Find the points on z-axis which are at a distance √21 from the point (1, 2, 3).

Answer»

Given: Points A(1, 2, 3) 

To find: the point on z-axis which is at distance of from the given point 

As we know x = 0 and y = 0 on z-axis 

Let R(0, 0, z) any point on z-axis 

According to question:

RA = \(\sqrt{21}\)

⇒ RA2 = 21 

Formula used: 

The distance between any two points (a, b, c) and (m, n, o) is given by,

\(\sqrt{(a−m)^2+(b−n)^2+(c−0)^2}\)

Therefore, 

Distance between R(0, 0, z) and A(1, 2, 3) is RA,

\(\sqrt{(0−1)^2+(0−2)^2+(z−3)^2} \) 

\(\sqrt{1+4+(z−3)^2} \) 

 = \(\sqrt{5+(z−3)^2} \)

As RA2 = 21

5 + (z – 3)2 = 21 

⇒ z2+ 9 – 6z + 5 = 21 

⇒ z2 – 6z = 21 – 14 

⇒ z2– 6z – 7 = 0 

⇒ z2– 7z + z – 7 = 0 

⇒ z(z– 7) + 1(z – 7) = 0 

⇒ (z– 7) (z + 1) = 0 

⇒ (z– 7) = 0 or (z + 1) = 0 

⇒ z= 7 or z = -1 

Hence points (0, 0, 7) and (0, 0, -1) on z-axis is equidistant from (1, 2, 3)



Discussion

No Comment Found