

InterviewSolution
Saved Bookmarks
1. |
Find the roots of the equation \(\frac{(x+3)}{(x+2)}\) = \(\frac{(3x-7)}{(2x-3)}\), x ≠ -2, \(\frac{3}{2}\). |
Answer» Given, \(\frac{(x+3)}{(x+2)}\) = \(\frac{(3x-7)}{(2x-3)}\) On cross-multiplying we get, (x + 3)(2x – 3) = (x + 2)(3x – 7) ⇒ 2x2 – 3x + 6x – 9 = 3x2 – x – 14 ⇒ 2x2 + 3x – 9 = 3x2 – x – 14 ⇒ x2 – 3x – x – 14 + 9 = 0 ⇒ x2 – 5x + x – 5 = 0 ⇒ x(x – 5) + 1(x – 5) = 0 ⇒ (x – 5)(x + l) – 0 Now, either x – 5 = 0 or x + 1 = 0 ⇒ x = 5 and x = -1 Thus, the roots of the given quadratic equation are 5 and -1 respectively. |
|