1.

Find the roots of the equation \(\frac{(x+3)}{(x+2)}\) = \(\frac{(3x-7)}{(2x-3)}\), x ≠ -2, \(\frac{3}{2}\).

Answer»

Given,

  \(\frac{(x+3)}{(x+2)}\)\(\frac{(3x-7)}{(2x-3)}\)

On cross-multiplying we get,

(x + 3)(2x – 3) = (x + 2)(3x – 7)

⇒ 2x– 3x + 6x – 9 = 3x– x – 14

⇒ 2x+ 3x – 9 = 3x– x – 14

⇒ x– 3x – x – 14 + 9 = 0

⇒ x– 5x + x – 5 = 0

⇒ x(x – 5) + 1(x – 5) = 0

⇒ (x – 5)(x + l) – 0

Now, either x – 5 = 0 or x + 1 = 0

⇒ x = 5 and x = -1

Thus, the roots of the given quadratic equation are 5 and -1 respectively.



Discussion

No Comment Found