

InterviewSolution
Saved Bookmarks
1. |
Find the square root of `(2x+7)(x^(2)-9)(2x-5)+9`. |
Answer» First of all we make the coefficient of x as 1 in each factor by taking some constant common as : `2(x+(7)/(2))(x+3)(x-3).2(x-(5)/(2))+9` Now, we take the product of 2 factors at a time in such a way that sum of constant terms is same in each pair as : ` (##NTN_MATH_IX_C02_S01_066_S01.png" width="80%"> `=4(x^(2)+(x)/(2)-(21)/(2))(x^(2)+(x)/(2)-(15)/(2))+9` Let `x^(2)+(x)/(2)=a` `=(a-(21)/(2))(a-(15)/(2))+9` `4(a^(2)-18a+(315)/(4))+9` `4(a^(2)-18a)+315+9` `4underset("make perfect square")(ubrace(a^(2)-18a+81)-81)+324 " " ["add and subtract"(("coeff. of a")/(2))^(2) " to make perfect square"]` `=4(a^(2)-18a+81)-324+324` `=4(a-9)^(2)` Replace the value of a as `x^(2)+(x)/(2)`, we get `4(x^(2)+(x)/(2)-9)^(2)=4((2x^(2)+x-18)/(2))^(2)=(2x^(2)+x-18)^(2)` `therefore " Square root of" (2x+7)(x^(2)-9)(2x-5)+9 i.e., (2x^(2)+x-18)^(2) " is" 2x^(2)+x-18`. |
|