1.

Find the sum of the series 1.22 + 3.32 + 5.42 + .... to n terms(a) \(\frac{n}{2}\)(n3 + 4n2 + 4n - 1)(b)\(\frac{n}{2}\)(n + 1)2 (2n + 1) (c) \(\frac{n^2}{3}\)(n + 1)2 (2n + 1) (d) \(\frac{n}{2}\)(n3 + 4n2 - 2n + 1)

Answer»

(a) \(\frac{n}{2}\)(n3 + 4n2 + 4n - 1)

nth term (Tn) of the given series 

= (2n – 1) (n + 1)2 = (2n – 1) (n2 + 2n + 1) 

= 2n3 – n2 + 4n2 – 2n + 2n – 1 = 2n3 + 3n2 – 1

∴ Sn\(2\displaystyle\sum_{k=1}^{n} k^3\) + \(3\displaystyle\sum_{k=1}^{n} k^2-n\)

= 2 x \(\frac{n^2(n+1)^2}{4}\) + 3 x \(\frac{1}{6}\) x n (n + 1)(2n + 1) - n 

\(\frac{1}{2}\)[n2 (n2 + 2n +1) + (n2 + n)(2n + 1) -2n]

\(\frac{1}{2}\)[n4 + 2n3 + n3 + 2n3 + 2n2 + n2 + n - 2n]

\(\frac{1}{2}\)[n4 + 4n3 + 4n2 - n] = \(\frac{n}{2}\)(n3 + 4n2 + 4n - 1)



Discussion

No Comment Found