

InterviewSolution
Saved Bookmarks
1. |
Find the time period of another pendulum of length equal to half of it at the same place. |
Answer» <html><body><p></p>Solution :The <a href="https://interviewquestions.tuteehub.com/tag/period-1151023" style="font-weight:bold;" target="_blank" title="Click to know more about PERIOD">PERIOD</a> of <a href="https://interviewquestions.tuteehub.com/tag/simple-1208262" style="font-weight:bold;" target="_blank" title="Click to know more about SIMPLE">SIMPLE</a> <a href="https://interviewquestions.tuteehub.com/tag/pendulum-1149901" style="font-weight:bold;" target="_blank" title="Click to know more about PENDULUM">PENDULUM</a> is given by <br/> `T= 2pisqrt((l)/(g)) ….(<a href="https://interviewquestions.tuteehub.com/tag/1-256655" style="font-weight:bold;" target="_blank" title="Click to know more about 1">1</a>) :. G= 4pi^(<a href="https://interviewquestions.tuteehub.com/tag/2-283658" style="font-weight:bold;" target="_blank" title="Click to know more about 2">2</a>)(l)/(T^(2))` i.e., `(l)/(T_(1)^(2))= (l_(2))/(T_(2)^(2)) implies (1.0)/(2^(2))= (0.50)/(T_(2)^(2))` or `T_(2)^(2)= (0.50)/(1.01) xx 4= 2 ` <br/> `:. T_(2)= sqrt(2)= 1.414s`</body></html> | |