

InterviewSolution
Saved Bookmarks
1. |
Find the time taken for height of water level to fall from 'h' to 'h'in a vessel, if water comes out from a small hole at the bottom |
Answer» <html><body><p></p><a href="https://interviewquestions.tuteehub.com/tag/solution-25781" style="font-weight:bold;" target="_blank" title="Click to know more about SOLUTION">SOLUTION</a> :From <a href="https://interviewquestions.tuteehub.com/tag/equation-974081" style="font-weight:bold;" target="_blank" title="Click to know more about EQUATION">EQUATION</a> of continity for an incompressible liquid `Av^(1)=asqrt(2gh)` (or) `v^(1)=((a)/(A))sqrt(2gh)` <br/>where `v^(1)` is the <a href="https://interviewquestions.tuteehub.com/tag/rate-1177476" style="font-weight:bold;" target="_blank" title="Click to know more about RATE">RATE</a> of descendence of the <a href="https://interviewquestions.tuteehub.com/tag/level-1072714" style="font-weight:bold;" target="_blank" title="Click to know more about LEVEL">LEVEL</a> of free surface. So, `v^(1)` can be <a href="https://interviewquestions.tuteehub.com/tag/written-732709" style="font-weight:bold;" target="_blank" title="Click to know more about WRITTEN">WRITTEN</a> as: `V^(1)=(-dh)/(dt)` <br/>`therefore (-dh)/(dt)=((a)/(A))sqrt(2gh)` (or) `overset(h^(1))underset(h)int(dh)/(sqrt(h))=-((a)/(A))sqrt(2g)overset(t)underset(t=0)intdt` <br/>`therefore 2(sqrt(h^(1)-sqrt(h))) =-((a)/(A))(sqrt(2g))t` (or)`t=(2A)/(asqrt(2g))(sqrt(h^(1))-sqrt(h))prop t`</body></html> | |