InterviewSolution
| 1. |
Find the truth set in case of each of the following open sentences defined on N:(i) x + 2 < 10(ii) x + 5 < 4(iii) x + 3 > 2 |
|
Answer» (i) Given: The open sentence x + 2 < 10 is defined on N. Here N: {1, 2, 3, 4, 5, 6, 7, 8, …….…} At x = 1 ⇒ x + 2 = 3 < 10 At x = 2 ⇒ x + 2 = 4 < 10 At x = 3 ⇒ x + 2 = 5 < 10 At x = 4 ⇒ x + 2 = 6 < 10 At x = 5 ⇒ x + 2 = 7 < 10 At x = 6 ⇒ x + 2 = 8 < 10 At x = 7 ⇒ x + 2 = 9 < 10 At x = 8 ⇒ x + 2 = 10 x = {1, 2, 3, 4, 5, 6, 7} satisfies x + 2 <10. So, the truth set of open sentence x + 2 < 10 defined on N : {1, 2, 3, 4, 5, 6, 7} (ii) The open sentence x + 5 < 4 is defined on N. Here N: {1, 2, 3, 4, 5, 6, 7, 8, …….…} At x = 1 ⇒ 1 + 5 = 6 > 4 So, the truth set of open sentence x + 5 < 4 defined on N is an empty set, {}. (iii) The open sentence x + 3 > 2 is defined on N. Here N: {1, 2, 3, 4, 5, 6, 7, 8, …….…} At x = 1 ⇒ x + 3 = 4 > 2 At x = 2 ⇒ x + 3 = 5 > 2 At x = 3 ⇒ x + 3 = 6 > 2 At x = 4 ⇒ x + 3 = 7 > 2 At x = 5 ⇒ x + 3 = 8 > 2 At x = 6 ⇒ x + 3 = 9 > 2 At x = 7 ⇒ x + 3 = 10 > 2 And so on… x = {1, 2, 3, 4, 5, 6, 7….} satisfies x + 3 > 2. So, the truth set of open sentence x + 3 > 2 defined on N is an infinite set i.e. {1, 2, 3, 4, 5, 6, 7, ………} |
|