InterviewSolution
| 1. |
Find the value of current I in the circuit given below: |
|
Answer» Resistors across AC and DE are in parallel i.e. RAC and RDE are in parallel. So \(\frac1{R'_p}=\frac1{R_{AC}}+\frac1{R_{DE}}\) ⇒ \(\frac1{R'_p}=\frac1{30}+\frac1{30}\) ⇒ \(\frac1{R'_p}=\frac{1+1}{30}+\frac2{30}\) ⇒ R'p = \(\frac{30}2\) = 15Ω Now R’p and RBC are I series. R’s = R’p + RBC ⇒ R’s = 15 + 15 = 30Ω. Again, RAB and R’s are in parallel. \(\frac{1}{R^"_p}=\frac{1}{R_{AB}}+\frac{1}{R'_s}\) \(\frac{1}{R^"_p}=\frac{1}{15}+\frac{1}{30}\) ⇒ \(\frac{1}{R^"_p}=\frac{1+2}{30}+\frac{3}{30}\) ⇒ R"p = \(\frac{30}3\) = 10Ω Equivalent resistance of the above circuit is 10Ω. Now, current flowing through the circuit is l = \(\frac{V}{R} =\frac3{10}=0.3\) The value of current is 0.3A |
|