1.

Find the value of k, if x – 1 is a factor of p(x) in each of the following cases : (i) p(x) = x2 + x + k (ii) p(x) = 2x2 + kx + √2(iii) p(x) = kx2 – √2x + 1 (iv) p(x) = kx2 – 3x + k

Answer»

(i) p(x) = x2 + x + k 

g(x) = x – 1 k = ? 

If x – 1 = 0, then x = 1 

p(x) = x2 + x + k 

p(1) = (1)2 + 1 + k 

p( 1) = 1 + 1 + k 

p( 1) = 2 + k 

If g(x) is a factor, then we have r(x) = 0 

∴ p(1) = 0 

2 + k= 0 

∴ k = 0 – 2 

k = -2 

(ii) p(x) = 2x2 + kx + √2

g(x) = x – 1 k = ? 

If x – 1 = 0, then x = 1 

p(x) = 2x2 + kx + √2

p(1) = 2(1)2 + k(1) + √2 

= 2(1) + k(l) + √2

p(1) = 2 + k + √2

If (x – 1) is the factor of p(x), then we have p(1) = 0. 

∴ 2 + k + = 0 k = -2 – √2 = 0

(iii) p(x) = kx2 – √2x + 1 

g(x) = x – 1 k = ? 

If x – 1 = 0, then x = 1 

p(x) = kx2 – √2x + 1 

p(1) = k(1)2– √2(1) + 1 

= k( 1) – √2 + 1 

p(1) = k - √2 + 1 

If (x – 1) is the factor of p(x) then we have p(1) = 0. 

∴ p(1) = k – √2 + 1 = 0 

∴ k= √2 – 1 

(iv) p(x) = kx2 – 3x + k 

g(x) = x – 1 k = ? 

If x – 1 = 0, then x – 1 

p(x) = kx2 – 3x + k 

p(1) = k(1)2 – 3(1) + k 

= k(1) – 3(1) + k 

= k – 3 + k p(1) 

= 2k – 3 

If (x – 1) is the factor of p(x), then we have p(1) = 0.



Discussion

No Comment Found