

InterviewSolution
1. |
Find the values of k for which the roots are real and equal in each of the following equations:(i) 2x2 + kx + 3 = 0(ii) kx(x - 2) + 6 = 0(iii) x2 - 4kx + k = 0(iv) \(k\text{x}(\text{x}-2\sqrt{5})+10=0\)(v) px(x - 3) + 9 = 0(vi) 4x2 + px + 3 = 0 |
Answer» (i) 2x2 + kx + 3 = 0 For a quadratic equation, ax2 + bx + c = 0, D = b2 – 4ac If D = 0, roots are real and equal 2x2 + kx + 3 = 0 ⇒ D = k2 – 4 × 2 × 3 = 0 ⇒ k2 = = 24 ⇒ k = 2√6 (ii) kx(x - 2) + 6 = 0 For a quadratic equation, ax2 + bx + c = 0, D = b2 – 4ac If D = 0, roots are real and equal kx(x - 2) + 6 = 0 ⇒ kx2 – 2kx + 6 = 0 ⇒ D = 4k2 – 4 × 6 × k = 0 ⇒ 4k(k – 6) = 0 ⇒ k = 0, 6 but k can’t be 0 a it is the coefficient of x2, thus k = 6 (iii) x2 - 4kx + k = 0 For a quadratic equation, ax2 + bx + c = 0, D = b2 – 4ac If D = 0, roots are real and equal x2 - 4kx + k = 0 ⇒ D = 16k2 – 4k = 0 ⇒ 4k(4k – 1) = 0 ⇒ k = 0, 1/4 (iv) \(k\text{x}(\text{x} - 2\sqrt{5})+10=0\) For a quadratic equation, ax2 + bx + c = 0, D = b2 – 4ac If D = 0, roots are real and equal \(k\text{x}(\text{x} - 2\sqrt{5})+10=0\) ⇒ kx2 – 2√5kx + 10 = 0 ⇒ D = 4 × 5k2 – 4 × k × 10 = 0 ⇒ k2 = 2k ⇒ k = 2 (v) px(x - 3) + 9 = 0 For a quadratic equation, ax2 + bx + c = 0, D = b2 – 4ac If D = 0, roots are real and equal px(x - 3) + 9 = 0 ⇒ px2 – 3px + 9 = 0 ⇒ D = 9p2 – 4 × 9 × p = 0 ⇒ p = 4 (vi) 4x2 + px + 3 = 0 For a quadratic equation, ax2 + bx + c = 0, D = b2 – 4ac If D = 0, roots are real and equal 4x2 + px + 3 = 0 ⇒ D = p2 – 4 × 4 × 3 = 0 ⇒ p2 = 48 ⇒ p = 4√3 |
|