1.

Find two natural numbers which differ by 3 and whose squares have the sum 117.

Answer»

Let the numbers be x and x – 3, as its given the number differ by 3.

From the question, it’s given that sum of squares of these numbers is 117.

x+ (x – 3)= 117

⇒ x+ x+ 9 – 6x – 117 = 0

⇒ 2x– 6x – 108 = 0

⇒ x– 3x – 54 = 0

Solving for x by factorization method, we have

⇒ x– 9x + 6x – 54 = 0

⇒ x(x – 9) + 6(x – 9) = 0

⇒ (x – 9)(x + 6) = 0

Now, either x – 9 = 0 ⇒ x = 9

Or, x + 6 = 0 ⇒ x = – 6

Considering only the positive value of x as natural numbers are always positive i.e, x = 9.

So, x – 3 = 6.

Thus, the two numbers are 6 and 9 respectively.



Discussion

No Comment Found