1.

Find two positive numbers whose sum is 14 and the sum of whose square is minimum.

Answer»

Let the two numbers be x and y 

Given x + y = 14 & S = x2 + y2

where y = 14 – x

∴ S = x2 + (14 – x)2 = x2 + 142 + x2 – 28x = 2x2 – 28x + 142 

\(\frac{ds}{dx}\) = 4x – 28 → (1) \(\frac{ds}{dx}\) = 0 

⇒ 4x – 28 = 0 ⇒ x = 7 

\(\frac{d^2s}{dx^2}\) = 4 > 0, sum is minimum. 

∴ y = 14 – x = 14 – 7 = 7 

∴ the two positive number are 7 & 7.



Discussion

No Comment Found