1.

For `a gt 01`, prove thjat `(1+a)^(n) ge (1+an)` for all natural numbers n.

Answer» When n=1 LHS=(1+a) and RHS =(1+a)
Hence `(1+a)^(n) ge (1+na)` is true, when n=1
`therefore P(1)` is true. (a)
Let P(k) be true `Rightarrow (1+a)^(k) ge (1+ka)`…..(i)
To prove P(k+1) is true, i.e. `(1+a)^(k+1) ge 1+(k+1)a=x("say")` ......(ii) `"from "(i), (1+a)^(k+1) ge (1+ka)(1+a)y(say)`
Now, (y-x)=`(1+ka) +a+ka^(2)-1-ka-a)`
`=1+ka+a+ka^(2)-1-1ka-a`
`=ka^(2) gt 0 therefore y gt x`
From (iii) and (iv), we get
`(1+a)^(k+1) ge 1,+(k+1)a`
Hence, P(k+1) is true whenever P(k) is true......(b)
From (a) and (b) by the principle of mathematical induction, it follows that P(n) is true for all natural number n.


Discussion

No Comment Found

Related InterviewSolutions