1.

For any real number r, let Ar = {eiπrn : n is a natural number} be a set of complex numbers. Then(A) A1, A1/π, A0.3  are all infinite sets(B)  A1 is a finite set and A1/π, A0.3  are infinite sets(C)  A1, A1/π ,  A0.3  are all finite sets(D)  A1, A0.3 are finite sets and A1/π is an infinite sets

Answer»

Correct option (D) A1, A0.3 are finite sets and A1/π is an infinite sets

Explanation:

eiπrn is always a finite set when r is a rational & is infinite when  r = 1/π .



Discussion

No Comment Found

Related InterviewSolutions