InterviewSolution
Saved Bookmarks
| 1. |
Giventhat thesystem of equationsx=cy+bz ,y=az+cx , z=bx +ay has nonzerosolutions andand atleastone of the a,b,c is a properfraction. Systemhas solution such that |
|
Answer» `X,y,z -= (1-2a^(2)):(1-2b^(2)):(1-2c^(2))` `-x+cy+bz=0` `cx-y+az=0` `bx+ay-z=0` has a nonzerosolution if `Delta = |{:(-1,,c,,b),(c,,-1,,a),(b,,a,,-1):}|=0` then CLEARLY the SYSTEMHAS infinitely manysolutions .From(1) and (2) we have `(x)/(ac+b) =(y)/(bc+a)=(z)/(1-c^(2)) ` `" or" (x^(2))/((1-a^(2))(1-c^(2)))=(y^(2))/((1-b^(2))(1-c^(2)a)) =(z^(2))/((1-c^(2))^(2))`[From (4)] `"or" (x^(2))/(1-a^(2))=(y^(2))/(1-b^(2)) =(z^(2))/(1-c^(2))` from (5)we see that `1-a^(2),1-b^(2),1-c^(2)` are allpositiveor allnegative .Giventhat oneof a,b,cis properfraction so `1-a^(2) gt ,1-b^(2) gt 0,1-c^(2) gt 0` WHICHGIVES `a^(2) +b^(2)+c^(2) lt 3` using(4) and (6) we get `1lt 3+2 abc` `"or" abc gt -1` |
|