1.

(i) If the compound proposition “(p → q) ∧ (p ∧ r)” is false, then find the truth values of p, q and r. (ii) If the compound proposition p→ (q ∨ r) is false, then find the truth values of p, q and r. (iii) If the compound proposition p → (~q ∨ r) is false, then find the truth values of p, q and r. (iv) If the truth value of the propositions (p ∧ q) → (r ∨ ~s) is false, then find the truth values of p, q, rand s.

Answer»

(i) Given (p → q) ∧ (p ∧ r) is false 

(a) Case 1: p → q is true & p ∧ r is false 

p is T q is T & p is T &ris F 

p = T, q = T, r = F 

Case 2(a): p = F, q = T p ∧ r= F → p = F, r = F 

p = F, q = T, r = f 

(b): (p →q) is F & par is true 

T → F = F T ∧ T is T 

P=T, q = F, r=T 

Case 3: (p → q) is F & (p ∧ r) is false 

T → F = F 

F ∧ F = F 

F ∧ T = F

F ∧ F = F . 

∴ p = T, q = F, r= F. 

(ii) Given p → (q ∨ r) is false 

T → F = F 

∴ p = T & q ∨ r is false 

= F ∨ F= F 

∴ p = T, q = F & r= F 

(iii) Given p → (q ∨ r) is false 

Then T → F= F 

∴ P = T, ~ q ∨ r= F 

F ∨ F = F 

∴ q = T, q = T, r = F. 

(iv) Given (p ^ q) → (r ∨ ~s) is false 

We know that T → F = F 

∴ p∧q = T and r ∨ ~s = F is false 

T∧ T = T 

F ∨ F= F is false 

∴ p = T, q = T, r = F, S = T



Discussion

No Comment Found