1.

If 1-p is a root of the equation x^(2)+px+1-p=0, then its roots are

Answer»

`0,-1`
`-1,1`
`0,1`
`-1,2`

Solution :`LHL = UNDERSET(xrarro^(-))(LIM)(x)/(ln(1+x)).[x]^(2)ln2=ln2`
`RHL = underset(xrarr0^(+))(Lim)(ln(e^(x^(2))+2sqrt(x)))/(sqrt(x)((tansqrt(x))/(sqrt(x))))=underset(xrarr0^(+))(Lim)(lne^(x^(2))+ln(1+(2sqrt(x))/(e^(x^(2)))))/(sqrt(x))`
`=underset(xrarr0^(+))(Lim)(x^(2))/(sqrt(x))+ln(1+(2sqrt(x))/(e^(x^(2))))/((2sqrt(x))/(e^(x^(2))))x(2)/(e^(x^(2)))=2impliesLHL ne RHL `


Discussion

No Comment Found

Related InterviewSolutions