InterviewSolution
Saved Bookmarks
| 1. |
If 1-p is a root of the equation x^(2)+px+1-p=0, then its roots are |
|
Answer» Solution :`LHL = UNDERSET(xrarro^(-))(LIM)(x)/(ln(1+x)).[x]^(2)ln2=ln2` `RHL = underset(xrarr0^(+))(Lim)(ln(e^(x^(2))+2sqrt(x)))/(sqrt(x)((tansqrt(x))/(sqrt(x))))=underset(xrarr0^(+))(Lim)(lne^(x^(2))+ln(1+(2sqrt(x))/(e^(x^(2)))))/(sqrt(x))` `=underset(xrarr0^(+))(Lim)(x^(2))/(sqrt(x))+ln(1+(2sqrt(x))/(e^(x^(2))))/((2sqrt(x))/(e^(x^(2))))x(2)/(e^(x^(2)))=2impliesLHL ne RHL ` |
|