InterviewSolution
Saved Bookmarks
| 1. |
If 1 + sin θ + sin2 θ + ... upto ∞ = 2√3 + 4, then θ = ______1. 3π/42. π/33. π/44. π/6 |
|
Answer» Correct Answer - Option 2 : π/3 Concept: The sum of an infinite G.P. is S = \(\rm a\over 1-r\) Where a is the first term of the series and r is the common ratio Calculation: Given 1 + sin θ + sin2 θ + ... upto ∞ = 2√3 + 4 First term of the G.P is a = 1 and r = sin θ ∴ \(\rm 1\over 1 - \sin θ\) = 2√3 + 4 1 - sin θ = \(1\over2\sqrt3 + 4\) 1 - sin θ = \({1\over2\sqrt3 + 4} \times {2\sqrt3 - 4\over 2\sqrt3 - 4}\) 1 - sin θ = \( {4-2\sqrt3 \over 16-12}\) 1 - sin θ = \( 1-{\sqrt3 \over 2}\) sin θ = \( {\sqrt3 \over 2}\) ⇒ θ = \(\boldsymbol{\pi\over3}\) |
|