1.

If A(-1, 1) and B(2, 3) are two fixed points, then find the locus of a point P so that the area of triangle APB = 8 sq.units

Answer»

Let the point P(x1, y1). 

Fixed points are A(-1, 1) and B(2, 3). 

Given area (formed by these points) of the triangle 

APB = 8

\(\frac{1}{2}\)[x1(y2 – y3) + x2(y3 – y1) + x3(y1 – y2)] = 8 

\(\frac{1}{2}\)[x1(1 – 3) + (-1) (3 – y1) + 2(y– 1)] = 8 

\(\frac{1}{2}\)[-2x1 – 3 + y1 + 2y1 – 2] = 8 

\(\frac{1}{2}\)[-2x1 + 3y1 – 5] = 8 

⇒ -2x1 + 3y1 – 5 = 16 

⇒ -2x1 + 3y1 – 21 = 0 

⇒ 2x1 – 3y1 + 21 = 0 

∴ The locus of the point P(x1, y1) is 2x – 3y + 21 = 0.



Discussion

No Comment Found

Related InterviewSolutions