1.

If a and b are distinct real numbers, show that the quadratic equation 2(a2 + b2) x2 + 2 (a + b) x + 1 = 0 has no real roots.

Answer»

2(a2 + b2) x2 + 2 (a + b) x + 1 = 0

Compare given equation with the general form of quadratic equation, which is ax2 + bx + c = 0

a = 2 (a2 + b2), b = 2(a + b), c = 1

Discriminant:

D = b2 – 4ac

=[2(a + b)]2 – 4. 2 (a2 + b2).1

= 4a2 + 4b2 + 8ab – 8a2 – 8b2

= – 4a2 – 4b2 + 8ab

= – 4(a2 + b2 – 2ab)

= – 4(a – b)2 < 0

Hence the equation has no real roots.



Discussion

No Comment Found