1.

If α and β are the roots of the equation x2 + x + 1 = 0, then which of the following are the roots of the equation x2 - x + 1 = 0 ?1. α7 and β13  2. α13 and β7  3. α20 and β20  4. None of the above

Answer» Correct Answer - Option 1 : α7 and β13  

Concept:

1, ω and ω2 are cube root of unity, where, ω = \(\rm \frac{-1+\sqrt3i}{2}\)  and ω2\(\rm \frac{-1-\sqrt3i}{2}\)

  • ω3 = 1
  • 1 + ω + ω2 = 0

 

In quadratic equation, \(\rm ax^2+bx+c=0\)\(\rm x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Consider a quadratic equation: ax2 + bx + c = 0.

Let, α and β are the roots.

  • Sum of roots = α + β = -b/a
  • Product of the roots = α × β = c/a

 

Calculation:

Here, α and β are the roots of the equation x2 + x + 1 = 0

α  \(\rm ={-1 +\sqrt{1^2-4} \over 2}\)=\(\rm \frac{-1+\sqrt3i}{2}\) and β = \(\rm \frac{-1-\sqrt3i}{2}\)......(Using \(\rm x = {-b \pm \sqrt{b^2-4ac} \over 2a}\))

α = ω and β =  ω2 

In equation x2 - x + 1 = 0 

Roots = \(\rm {1 \pm\sqrt{1^2-4} \over 2}\)\(=\rm \frac{1\pm\sqrt3i}{2}\)

So, roots are -β and -α, i.e., - ω2 and  -ω

Sum of roots in quadratic equation x2 - x + 1 = 0, is 1

Assume roots are α7 and β13  

α7 + β13  = ((-ω)7 + (- ω2 )13)

= -((ω3)2 + (ω3)8ω2)

= - (ω + ω2 )

= -(-1)

= 1

Hence, option (1) is correct.



Discussion

No Comment Found

Related InterviewSolutions