

InterviewSolution
Saved Bookmarks
1. |
If α,β are roots of eqn x^2−2x+3=0 then find the an eqn whose roots are α^3−3α^3+5α−2,β^3−β^2+β+5 |
Answer» Explanation: Answer Given α & β are the roots of EQUATION X 2 −2x+3=0 To find: Equation whose roots are α 3 −3α 2 +5α−2, β 3 −β 2 +β+5 Sol: x 2 −2x+3=0 x= 2 2± 4−12
x= 2 2± 8i
x=1± 2
i α=1+ 2
i, β=1− 2
i α 3 −3α 2 +5α−2=(1+ 2
i) 3 −3(1+ 2
i) 2 +5(1+ 2
i)−2 =1+2 2
i 3 +3 2
i(1+ 2
i)−3(1+2i 2 +2 2
i)+5+5 2
i−2 =1−2 2
i+3 2
i−6−3+6−6 2
i+3+5 2
i =1+ 2
i− 2
i =1 β 3 −β 2 +β+5=(1− 2
i) 3 −(1− 2
i) 2 +(1− 2
i)+5 =1−( 2
i) 3 −3 2
i(1− 2
i)−(1+2i 2 −2 2
i)+(1− 2
i)+5 =2 ∴ Equation whose roots are α 3 −3α 2 +5α−2 and β 3 −β 2 +β+5 is (x−1)(x−2)=0 ⇒x 2 −3x+2=0 ∴ x 2 −3x+2=0. |
|