1.

If α, β, γ  are the roots of the equation 2x3 – 3x2 + 6x + 1 = 0, then α2 +β2+ γ2  is equal to(a) \(\frac{-15}{4}\)(b) \(\frac{-9}{4}\)(c) \(\frac{13}{4}\)(d) 4

Answer»

(a) \(\frac{-15}{4}\)

Given,α, β, γ are the roots of the 2x3 – 3x2 + 6x + 1 = 0

Since S1\(\frac{\text{Coefficient of}\,x^2}{\text{Coefficient of}\,x^3}\) = S= α + β + γ = \(-\big(\frac{-3}{2}\big)\) = \(\frac{3}{2}\)

Since S2\(\frac{\text{Coefficient of}\,x}{\text{Coefficient of}\,x^3}\) = S= αβ + βγ + αγ = \(\frac{6}{2}\) = 3

Since S3\(\frac{\text{Coefficient of constant term}}{\text{Coefficient of}\,x^3}\) = S= αβγ = \(-\frac12\)

Now, α22+ γ= (α +β + γ)2 - 2(αβ + βγ + αγ)

\(\big(\frac{3}{2}\big)^2\) - 2 x 3 = \(\frac{9}{4}-6\) = \(\frac{-15}{4}\)



Discussion

No Comment Found