1.

If a certain amount of at a certain rate (p.a.) compounded annually becomes Rs 50400 in 3 years and Rs 241920 in 6 years then find the certain amount of sum ?1. Rs 80002. Rs 100003. Rs 125004. Rs 105005. None of these

Answer» Correct Answer - Option 4 : Rs 10500

Given:

Amount after 3 years is Rs 50400.

Amount after 6 years is Rs 241920.

Formula Used:

Amount = \(P × {\left( {1 + \frac{R}{{100}}} \right)^n}\)

CI = Amount - Principal = \(P × {\left( {1 + \frac{R}{{100}}} \right)^n}\) - P = \(P × \left\{ {{{\left( {1 + \frac{R}{{100}}} \right)}^n} - 1} \right\}\)

Calculation:

Let the sum be Rs x.

The rate of interest be R%.

According to the question,

Amount for 3 years = 50400

⇒ \(x × {\left( {1 + \frac{R}{{100}}} \right)^3}\) = 50400 ....(I)

Amount for 6 years = 241920

⇒ \(x × {\left( {1 + \frac{R}{{100}}} \right)^6}\) = 241920 ....(II)

On dividing (II) ÷  (I)

⇒ \({\left( {1 + \frac{R}{{100}}} \right)^3}\) = 241920/50400

⇒ \({\left( {1 + \frac{R}{{100}}} \right)^3}\) = 4.8 ....(III)

On putting the value of equation (III) in(I)

⇒ x × 4.8 = 50400

⇒ x = 10500

Therefore, the certain amount of sum is Rs 10500.



Discussion

No Comment Found

Related InterviewSolutions