1.

If `a_n=n/((n+1)!)` then find `sum_(n=1)^50 a_n`A. `(50!-1)/(50!)`B. `(51!-1)/(51!)`C. `(1)/(2(n-1)!)`D. none of these

Answer» We have,
`a_(n)+(n)/((n+1)!)`
`impliesa_(n)=((n+1)-1)/((n+1)!)`
`impliesa_(n)=(1)/(n!)-(1)/((n+1)!)`
`:.sum_(n=1)^(50)a_(n)=sum_(n=1)^(50){(1)/(n!)-(1)/(((n+1)!))}`
`impliessum_(n=1)^(50)a_(n)=((1)/(1!)-(1)/(2!))+((1)/(2!)-(1)/(3!))+((1)/(3!)-(1)/(4!))+.....+((1)/(50!)-(1)/(51!))`
`impliessum_(n=1)^(50)a_(n)=1-(1)/(51!)=(51!-1)/(51!)`


Discussion

No Comment Found

Related InterviewSolutions