InterviewSolution
Saved Bookmarks
| 1. |
If a variable x takes values 0,1,2,..,n with frequencies proportional to the binomial coefficients .^(n)C_(0),.^(n)C_(1),.^(n)C_(2),..,.^(n)C_(n), then var (X) is |
|
Answer» `(n^(2)-1)/(12)` `overline(X)=(0^(n)C_(0)+1^(n)C_(1)+2^(n)C_(2)+..+n^(n)C_(n))/(.^(n)C_(0)+.^(n)C_(1)+.^(n)C_(2)+..+.^(n)C_(n))=(underset(r=0)OVERSET(n)(sum r^(n)C_(r )))/(underset(r=0)overset(n)(sum .^(n)C_(r )))` `=(1)/(2^(n))underset(r=1)overset(n)(sum r)(n)/(r ).^(n-1)C_(r-1) "" [because underset(r=0)overset(n)(sum).^(n)C_(r )=2^(n), .^(n)C_(r )=(n)/(r ).^(n-1)C_(r-1)]` `=(n)/(2^(n))underset(r=1)overset(n)(sum).^(n-1)C_(r-1)=(n)/(2^(n))2^(n-1)=(n)/(2)[because underset(r=1)overset(n)(sum).^(n-1)C_(r-1)=2^(n-1)]` and `(1)/(N)sum f_(i)x_(1)^(2)=(1)/(2^(n))sum r^(2) .^(n)C_(r )=(1)/(2^(n)) underset(r=0)overset(n)(sum)[r(r-1)+r].^(n)C_(r )` `=(1)/(2^(n)){underset(r=0)overset(n)(sum)r-(r-1).^(n)C_(r )+underset(r=0)overset(n)(sum r) .^(n)C_(r )}` `=(1)/(2^(n)){underset(r=2)overset(n)(sum)r(r-1)(n)/(r )(n-1)/(r-1) .^(n-2)C_(r-2)+underset(r=1)overset(n)(sum r) (n)/(r ).^(n-1)C_(r-1)}` `=(1)/(2^(n)){n(n-1)2^(n-2)+N2^(n-1)}=(n(n-1))/(4)+(n)/(2)` `therefore "VAR"(X)=(1)/(N)sum f_(i)x_(i)^(2)-overline(X^(2))=(n(n-1))/(4)+(n)/(2)-(n^(2))/(4)=(n)/(4)` |
|